
Starter Kit for Raspberry Pi

1/106

Content

Content...1

Packing list...3

Introduction to Raspberry Pi...4

Install the System.. 7

GPIO Libraries..16

Code operation.. 18

Lesson 1 Blink..22

Lesson 2 Button control LED...26

Lesson 3 Flowing LED Lights..29

Lesson 4 RGB LED...31

Lesson 5 Buzzer...34

Lesson 6 DC Motor... 37

Lesson 7 Servo... 45

Lesson 8 LCD1602...49

Lesson 9 PIR motion sensor... 54

Lesson 10 Stepper Motor..60

Lesson 11 Segment Display...67

Lesson 12 DHT11...73

Lesson 13 Ultrasonic... 78

Lesson 14 Membrane Switch Module... 83

Lesson 15 GY-521 SENSOR...89

Lesson 16 LED Matrix..96

Lesson 17 IR Control.. 100

Lesson 18 4_digit_LED_Segment.. 103

2/106

Company Profile
Established in 2011, lafvin is a manufacturer and trader specialized in

research,development and production of 2560 uno,nano boards,and all kinds of

accessories or sensors use for arduino,rasperrry.We also complete starter kits designed

for interested lovers of any levels to learn Arduino or Raspberry.We are located in

Shenzhen,China.All of our products comply with international quality standards and

are greatly appreciated in a variety of different markets throughout the world.

Customer Service
We are cooperating with a lot of companies from diffirent countries.Also help them to

purchase electronic component products in china,and became the biggest supplier of

them. We look forward to build cooperate with more companies in future.

By the way,We also look forward to hearing from you and any of your critical

comment or suggestions.Pls email us by lafvin_service@163.com if you have any

questions or suggestions.

As a continuous and fast growing company. We keep striving our best to offer you

excellent products and quality service.

Our Store
Aliexpress store: https://www.aliexpress.com/store/1942043Brand in

Amazon:LAFVIN

Product Catalog
https://drive.google.com/drive/folders/0BwvEeRN9dKllblZING00TkhYbGs?usp=sha

ring

Tutorial
This tutorial include codes,library ,lessons,And related software, system image. It is
designed for beginners.This raspberry pie learning starter kit, including code tutorials
for C and Python. This kit includes the component modules required by the Raspberry
Pi introductory learner, as well as users of both computer languages.

mailto:lafvin_service@163.com
https://www.aliexpress.com/store/1942043
https://drive.google.com/drive/folders/0BwvEeRN9dKllblZING00TkhYbGs?usp=sharing
https://drive.google.com/drive/folders/0BwvEeRN9dKllblZING00TkhYbGs?usp=sharing

3/106

Packing list

4/106

Introduction to Raspberry Pi
The Raspberry Pi Foundation is a small charitable organization in the UK that

was founded to promote technology rather than selling technology. The Foundation
has never actually published a product in the past, so it chose two global channel
partners, e-Community and RS Components, to handle the first Raspberry Pi orders.
Faced with amateurs and enthusiastic DIY technology fans, Raspberry Pi sales are
very good.

Raspberry Pi is a mini computer for computer amateurs, teachers, elementary
school students and small businesses. It is pre-installed with Linux system. It is only
a credit card size, equipped with an ARM architecture processor, and its computing
performance is similar to that of a smart phone.

On the interface side, the Raspberry Pi provides a USB interface for the mouse
and keyboard, in addition to the Fast Ethernet interface, SD card expansion interface
and an HDMI high-definition video output interface, which can be connected to the
display or TV.

The Raspberry Pi evolves through many versions including the latest (so far)
Raspberry Pi 4 Model B ,3 Model B+ , 3 Model B, 2 model B, 1 Model B+, Zero, and
1 Model A+.This kit is based on Raspberry Pi 3 Model B+ as a development board.

5/106

Raspberry Pi Pin Name
There are no pins printed on the latest Raspberry Pi, which may bring various
troubles to new users. The following is the actual pins definition and form definition
of the Raspberry Pi.

Extension Board
In order to facilitate the experiment, the Raspberry Pi pin will be pulled
out through the expansion board, which makes it easier to combine the
use of the breadboard.The pin and raspberry pie pins on the expansion

6/106

board are the same in number and order.

7/106

Install the System
Step1 :download the following two tools
Win32 Disk Imager
A tool Disk Imager Win32 is required to write system. You can download and install
it through visiting the web site: https://sourceforge.net/projects/win32diskimager/

Raspbian operating system
Visit RPi official website (https://www.RaspberryPi.org/), click “Downloads” and
choose to download “RASPBIAN”. RASPBIAN supported by RPI is an operating
system based on Linux, which contains a number of contents required for RPi. We
recommended RASPBIAN system to beginners. All projects in this tutorial are
operated under the RASPBIAN system.

Step2 :Write an image file to the SD card
Connect the SD to the USB port of the computer through the card reader.Open the
Win32 Disk Imager tool, select the system image file you just downloaded, select the
disk location where the SD card is located, and finally click Write.Note:To select a
system image file, be sure to select the .img suffix file. The files downloaded from the
website must be decompressed to get the image file of the .img suffix.

https://sourceforge.net/projects/win32diskimager/
https://www.RaspberryPi.org/

8/106

Step3 :Open SSH function
Under previous Raspbian system, SSH is opened by default. Under the latest version
of Raspbian system, it is closed by default. So you need to open it first.
Method: For 2016-11-25 release or above, SSH (a protocol securing remote login
session and other network service) is Disabled by default. Therefore, when you need
to log in remotely, you need to create a file named "ssh" under /boot/ to enable it.

Step4 :Download putty software
We can use the Raspberry Pi in two ways: remote desktop and physical LCD
display.Regardless of which desktop connection method is used, we need to
communicate with the Raspberry Pi through a command window. We send control
commands to the Raspberry Pi through the command window of the putty software.
download the tool software Putty. Its official address: http://www.putty.org/

Step5 :Establish a command window to communicate with the
Raspberry Pi
Establish a command window for communication with the Raspberry Pi through the
SSH function.

Then use cable to connect your RPi to the routers of your PC LAN, to ensure
your PC and your RPi in the same LAN. Then put the system Micro SD Card
prepared before into the slot of the RPi and turn on the power supply waiting for
starting RPi(May take two minutes). For example, I have inquired to my RPi IP

http://www.putty.org/

9/106

address, and it is “192.168.0.103". Then open Putty,enter the address, select SSH,
and then click "OPEN", as shown below:

There will appear a security warning at first login. Just click “YES ” .If the
window prints the following message, the connection is successful.

Then enter the account password on the window to log in.

10/106

RPi default user name: pi;
password: raspberry).

When you enter the password, there will be no display on the screen. This is normal.
After the correct output, press “Enter” to confirm.The login is successful when the
following information is printed.

Step6 :Connection control desktop
We can use the Raspberry Pi in two ways: remote desktop and physical LCD

display.
If you don't have an LCD display, you can use the Raspberry Pi by connecting to

the remote desktop.There are two ways to connect to the remote desktop. The first is
to use the remote desktop of the pc and the xrdp function of the Raspberry Pi. The
second is to download the vnc software to connect.

Method 1: PC Remote Desktop<——>xrdp Raspberry Pi
Firstly,install a xrdp service, an open source remote desktop protocol(rdp) server,

for RPi. Type the following command, then press enter to confirm:
sudo apt-get install xrdp

Then type Y and press Enter to agree to the installation.

11/106

Then press win+R on your pc to search "mstsc.exe".Enter the Raspberry Pi IP address
found in the router management background, click “Connect”

Later, there will be xrdp login screen. Enter the user name and password of RPi and
click “OK”.
RPi default user name: pi
password: raspberry

12/106

After waiting for the connection to succeed, the Raspberry Pi remote control desktop
will appear.

13/106

Method 2: PC VNC Viewer<——>VNC Raspberry Pi
First download and install VNC on the PC.The download address is
https://www.realvnc.com/en/connect/download/viewer/windows/

And then,type the following command on the putty.
sudo raspi-config
The following interface will appear.
select 5 Interfacing Options-->P3VNC-->Yes-->OK-->Finish. Here Raspberry Pi may
need be restarted, and choose ok. Then open VNC interface.

https://www.realvnc.com/en/connect/download/viewer/windows/

14/106

Open the VNC software, enter the IP address of the Raspberry Pi viewed in the
background of the router, and connect.

Enter account password to log in

15/106

RPi default user name: pi
password: raspberry

Waiting for the remote desktop connection to complete

16/106

GPIO Libraries
WiringPi

WiringPi is a GPIO library for C applied to the Raspberry Pi. It complies with
GUN Lv3. The functions in wiringPi are similar to those in the wiring system of
Arduino. They enable the users familiar with Arduino to use wiringPi more easily.

Now the Raspbian system has wiringPi pre-installed, you can use it directly.Test
whether wiringPi is installed or not.WiringPi includes lots of GPIO commands which
enable you to control all kinds of interfaces on Raspberry Pi. You can test whether the
wiringPi library is installed successfully or not by the following instructions.

gpio –v

Then you can use the following instructions to see the distribution of the pins
gpio readall

Besides the original name of the pins, there are other three ways of naming
including physical,wiringPi and BCM. If you see a pin being defined as 0 in the C
language, its original name is GPIO 0. In Python code, it’s 17 (BCM) or 11(physical).
So you need to know the name,physical, wiringPi and BCM of a pin.

17/106

18/106

Code operation
We need to transfer the code from the pc side to the Raspberry Pi operating

platform. A common file transfer platform is FileZilla.
This software can be called the software folder in the information we

provide.According to your computer's operating system (32-bit or 64-bit?) choose the
appropriate version to install.

After downloading and installing, open the software, fill in the ip address of the
Raspberry Pi, and the account password of the login, port number 22, click to connect

After the connection is successful, select the code folder "LAFVIN_PI_Code" to
be uploaded on the left (provided in the information provided by the learning kit), and
the path "/home/pi" saved in the Raspberry Pi on the right.

19/106

After successful upload, you will see the path of the code transferred from the PC
side in the right dialog box is /home/pi/LAFVIN_PI_Code.
Note: This path is very important, then our program operation is directly from the
/home/pi/LAFVIN_PI_Code path, if this path error will affect the subsequent course
learning

20/106

code editor
After successfully connecting to the remote desktop and transferring the
code to the Raspberry Pi platform via the FileZilla software, you can edit
the code in the program editor that comes with the remote desktop.

21/106

22/106

Lesson 1 Blink
About this lesson:
In this lesson, we will learn how to program Raspberry Pi to make an LED blink. You
can play
numerous tricks with an LED as you want. Now get to start and you will enjoy the fun
of DIY
at once!

Introduction
In this experiment, connect a 220Ω resistor to the anode (the long pin of the LED), then the
resistor to 3.3 V, and connect the cathode (the short pin) of the LED to B17 of Raspberry Pi.
We can see from the schematic diagram that the anode of LED connects to a current
limiting resistor and then to 3.3V. Therefore, to turn on an LED, we need to make B17 low
(0V) level. It can be realized by programming.

Wiring diagram

23/106

24/106

Test instructions
According to the circuit, when the GPIO17 of RPi output high level, LED is turned on.
Conversely, when the
GPIO17 RPi output low level, LED is turned off. Therefore, we can let GPIO17
output high and low level in
cycle to make LED blink. We will use both C code and Python code to achieve the
target.
C_Code_1_Blink
First, type command into the terminal, observe the project result, and then analyze the
code.
1. Use cd command to enter 1_Blink directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/1_Blink
2. Use the following command to compile the code “Blink.c” and generate executable
file “Blink”.
gcc Blink.c -o Blink -lwiringPi
3. Then run the generated file “blink”.
sudo ./Blink
Now, LED start blink. You can press “Ctrl+C” to end the program.

Code explanation
#include <wiringPi.h>
/*The hardware drive library designed for the C language of Raspberry Pi. Adding
this library is convenient for hardware initialization, I/O ports,PWM outputs, etc.*/

#include <stdio.h>
/*Standard I/O library. The pintf function used for printing the data displayed on the
screen is realized by this library. There are many other performance functions for you
to explore.*/

#define LedPin 0 /*Pin B17 of the T_Extension Board is corresponding to the pin0 in
wiringPi, namely, GPIO 0 of the raspberry Pi. Assign GPIO 0 to LedPin, LedPin
represents GPIO 0 in the code later.*/

pinMode(LedPin, OUTPUT)// Set LedPin as output to write value to it.

digitalWrite(LedPin, LOW)
/*Set GPIO0 as 0V (low level). Since the cathode of LED is connected to GPIO0, thus
the LED will light up if GPIO0 is set low. On the contrary, set GPIO0 as high level,
digitalWrite (LedPin, HIGH): LED will go out.*/

void pinMode(int pin, int mode);
/*This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or
GPIO_CLOCK. Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM
output and only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK output modes.This
function has no effect when in Sys mode. If you need to change the pin mode, then
you can do it with the gpio program in a script before you start your program*/

void digitalWrite (int pin, int value);

25/106

/*Writes the value HIGH or LOW (1 or 0) to the given pin which must have been
previously set as an output.*/

Python_Code_1_Blink
Net, we will use Python language to make LED blink.
First, observe the project result, and then analyze the code.
1. Use cd command to enter 01.1.1_Blink directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/1_Blink
2. Use python command to execute python code blink.py.
Python Blink.py
Now, LED start blinking.

Code explanation
RPi.GPIO
" " "This is a Python module to control the GPIO on a Raspberry Pi. It includes basic
output function and input function of GPIO, and function used to generate PWM. " " "

GPIO.setmode(mode)
#Set the mode for pin serial number of GPIO.

mode=GPIO.BOARD
#which represents the GPIO pin serial number is based on physical location of RPi.

mode=GPIO.BCM
#which represents the pin serial number is based on CPU of BCM chip.

GPIO.setup(pin,mode)
" " "Set pin to input mode or output mode. “pin” for the GPIO pin, “mode” for INPUT
or OUTPUT." " "

GPIO.output(pin,mode)
" " "Set pin to output mode. “pin” for the GPIO pin, “mode” for HIGH (high level) or
LOW (low level)." " "

26/106

Lesson 2 Button control LED
About this lesson:
In this lesson, we will learn how to turn an LED on or off by a button.
Introduction
Button
Buttons are a common component used to control electronic devices. They are usually used
as switches to connect or disconnect circuits. Although buttons come in a variety of sizes
and shapes, the one used here is a 6mm mini-button as shown in the following pictures. Pin
1 is connected to pin 2 and pin 3 to pin 4. So you just need to connect either of pin 1 and
pin 2 to pin 3 or pin 4.

The following is the internal structure of a button. Since the pin 1 is connected to pin
2, and pin 3 to pin 4. The symbol on the right below is usually used to represent a
button in circuits.

When the button is pressed, the 4 pins are connected, thus closing the circuit.
Use a normally open button as the input of Raspberry Pi, the detailed connection is as shown
in the schematic diagram below. When the button is pressed, the B18 will turn into low level
(0V). We can detect the state of the B18 through programming. That is, if the B18 turns into
low level, it means the button is pressed. You can run the corresponding code when the
button is pressed, and then the LED will light up. Note: The longer pin of the LED is the
anode and the shorter one is the cathode.

27/106

Wiring diagram

28/106

Test instructions
This project is designed for learning how to use button to control LED. We first need
to read the state of button, and then determine whether turn on LED according to the
state of the button.
C_Code_2_Button_LED
First, observe the project result, then analyze the code.
1. Use cd command to enter 2_Button_LED directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/2_Button_LED
2. Use the following command to compile the code “Button_LED.c ” and generate
executable file “Button_LED.c ”
gcc Button_LED.c -o Button_LED -lwiringPi
3. Then run the generated file “Button_LED”.
sudo ./Button_LED
Later, the terminal window continues to print out the characters “led off…”. Press the
button, then LED is urned on and then terminal window prints out the "led on…".
Release the button, then LED is turned off and then terminal window prints out the
"led off…". You can press "Ctrl+C" to terminate the program.

Code explanation
int digitalRead (int pin);
/*This function returns the value read at the given pin. It will be “HIGH” or “LOW”(1
or 0) depending on the logic level at the pin.*/

Python_Code_2_Button_LED
First, observe the project result, then analyze the code.
1. Use cd command to enter 2_Button_LED directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/2_Button_LED
2. Use Python command to execute Button_LED.py.
python Button_LED.py
Later, the terminal window continue to print out the characters “led off…”, press the
button, then LED is turned on and then terminal window print out the "led on…".
Release the button, then LED is turned off and then terminal window print out the
"led off…". You can press "Ctrl+C" to terminate the program.

Code explanation
GPIO.input()
" " "his function returns the value read at the given pin. It will be “HIGH” or
“LOW”(1 or 0) depending on the logic level at the pin." " "

29/106

Lesson 3 Flowing LED Lights
About this lesson:
In this lesson, we will learn how to make eight LEDs blink in various effects as you
want based on Raspberry Pi.
Introduction
Judging from the schematic diagram, we can know that a LED and a current-limiting resistor have
been connected to B17, B18, B27, B22, B23, B24, B25, and B4 respectively.The current-limiting
resistor has been connected to the 3.3V power supply on other side.Therefore, if we want to light
up one LED, we only need to set the GPIO of the LED as low level. So in this experiment, set B17,
B18, B27, B22, B23, B24, B25, and B4 to low level in turn by programming, and then
LED0-LED7 will light up in turn. You can make eight LEDs blink in different effects by
controlling their delay time and the order of lighting up.anode and the shorter one is the cathode.

Wiring diagram

30/106

Test instructions
This project is designed to make a water lamp. First turn on the first LED, then turn
off it. Then turn on the second LED, and then turn off it....... Until the last LED is
turned on, then is turned off. And repeats the process to achieve the effect of flowing
water light.
C_Code_3_Flowing_LED_Lights
First, observe the project result, then analyze the code.
1. Use cd command to enter 3_Flowing_LED_Lights directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/3_Flowing_LED_Lights
2. Use following command to compile “Flowing_LED_Lights.c” and generate
executable file “Flowing_LED_Lights”.
gcc Flowing_LED_Lights.c -o Flowing_LED_Lights -lwiringPi
3. Then run the generated file “Flowing_LED_Lights”.
sudo ./Flowing_LED_Lights
After the program is executed, you will see that LED starts with the flowing water
way to be turned on from left to right, and then from right to left.
Python_Code_3_Flowing_LED_Lights
First, observe the project result, then analyze the code.
1. Use cd command to enter 3_Flowing_LED_Lights directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/3_Flowing_LED_Lights
2. Use Python command to execute Python code “Flowing_LED_Lights.py”.
python Flowing_LED_Lights.py
After the program is executed, you will see that LED starts with the flowing water
way to be turned on from left to right, and then from right to left.

31/106

Lesson 4 RGB LED
About this lesson:
In this chapter, we will learn how to control a RGB LED.

Introduction
RGB LED has integrated 3 LEDs that can respectively emit red, green and blue light. And it
has 4 pins. The long pin (1) is the common port, that is, 3 LED 's positive or negative port.
The RGB LED with common positive port and its symbol are shown below.

The three primary colors of the RGB LED can be mixed into various colors by brightness.
The brightness of LED can be adjusted with PWM. the softPwm library simulates PWM
(softPwm) by programming. You only need to include the header file softPwm.h (for C
language users), and then call the API it provides to easily control the RGB LED by
multi-channel PWM output, so as to display all kinds of color.

Wiring diagram

32/106

Test instructions
Since this project requires 3 PWM, but in RPi, only one GPIO has the hardware
capability to output PWM, we need to use the software to make the ordinary GPIO
output PWM.
C_Code_4_RGB_LED
First, observe the project result, then analyze the code.
1Use cd command to enter 4_RGB_LED directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/4_RGB_LED
2. Use the following command to compile the code “RGB_LED.c ” and generate
executable file “RGB_LED.c ”
gcc RGB_LED.c –o RGB_LED -lwiringPi
3. Then run the generated file “RGB_LED”.
sudo ./RGB_LED
After the program is executed, you will see that the RGBLED shows light of different
color randomly.You can press "Ctrl+C" to terminate the program.

33/106

Code explanation
int softPwmCreate (int pin, int initialValue, int pwmRange) ;
// This creates a software controlled PWM pin.
void softPwmWrite (int pin, int value) ;
// This updates the PWM value on the given pin.
long random();
//This function will return a random number.
Python_Code_4_RGB_LED
First, observe the project result, then analyze the code.
1. Use cd command to enter 4_RGB_LED directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/4_RGB_LED
2. Use Python command to execute RGB_LED.py.
python RGB_LED.py
After the program is executed, you will see that the RGBLED shows light of different
color randomly. You can press "Ctrl+C" to terminate the program.

Code explanation
def loop ():

while True : :
r= =random. .randint((0, ,100))
g= =random. .randint((0, ,100))
b= =random. .randint((0, ,100))
setColor((r, ,g, ,b))
print (('r=%d, g=%d, b=%d ' %(r , ,g, , b))
time. .sleep((0.3))

" " "The function random.randint(a, b) can returns a random integer within the
specified range (a, b).In last chapter, we have learned how to use python language to
make a pin output PWM. In this project, we let three pins output PWM, and the usage
is exactly the same as last chapter. In the “while” cycle of “loop”function, we first
obtain three random numbers, and then specify these three random numbers as the
PWM value of the three pins.o that the RGBLED switching of different colors
randomly." " "

34/106

Lesson 5 Buzzer
About this lesson:
n this lesson, we will learn how to drive an active buzzer to beep with a PNP
transistor.
Introduction
BUZZER:

Electronic buzzers are DC-powered and equipped with an integrated circuit.
They are widely used in computers, printers, photocopiers, alarms, electronic toys,
automotive electronic devices, telephones, timers and other electronic products for
voice devices. Buzzers can be categorized as active and passive ones. Turn the pins of
two buzzers face up. The one with a green circuit board is a passive buzzer, while the
other enclosed with a black tape is an active one.

The difference between the two is that an active buzzer has a built-in oscillating
source, so it will generate a sound when electrified. A passive buzzer does not have
such a source so it will not tweet if DC signals are used; instead, you need to use
square waves whose frequency is between 2K and 5K to drive it. The active buzzer is
often more expensive than the passive one because of multiple built-in oscillating
circuits.

Transistor：

Due to the current operating of buzzer is so large that GPIO of RPi output capability
can not meet the requirement. A transistor of NPN type is needed here to amplify the
current. Transistor, the full name: semiconductor transistor, is a semiconductor device
that controls current. Transistor can be used to amplify weak signal, or works as a
switch. It has three electrodes(PINs): base (b), collector (c) and emitter (e). When
there is current passing between "be", "ce" will allow several-fold current (transistor
magnification) pass, at this point, transistor works in the amplifying area. When
current between "be" exceeds a certain value, "ce" will not allow current to increase
any longer, at this point, transistor works in the saturation area. Transistor has two
types shown below: PNP and NPN,

35/106

Wiring diagram

36/106

Test instructions
In this project, Raspberry Pi control buzzer sounds for a while, stops and waits for a while,
repeats the loop.
C_Code_5_Buzzer
First, observe the project result, then analyze the code.
1Use cd command to enter 5_Buzzer directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/5_Buzzer
2. Use the following command to compile the code “Buzzer.c ” and generate executable file
“Buzzer.c ”
gcc Buzzer.c -o Buzzer -lwiringPi
3. Then run the generated file “Buzzer”.
sudo ./Buzzer

Code explanation
digitalWrite(BeepPin, LOW);
/* We use an active buzzer in this experiment, so it will make sound automatically when
connecting to the direct current. This sketch is to set the I/O port as low level (0V), thus to
manage the transistor and make the buzzer beep.*/
digitalWrite(BeepPin, HIGH);
/* To set the I/O port as high level(5V), thus the transistor is not energized and the buzzer
doesn’t beep.*/
Python_Code_5_Buzzer
First, observe the project result, then analyze the code.
1. Use cd command to enter 5_Buzzer directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/5_Buzzer
2. Use Python command to execute Buzzer.py.
python Buzzer.py

Code explanation
GPIO.output(BeepPin, GPIO.LOW)# Set the buzzer pin as low level.

time.sleep(0.1)
" " "Wait for 0.1 second. Change the switching frequency by changing this parameter. Note: Not
the sound frequency. Active Buzzer cannot change sound frequency." " "

GPIO.output(BeepPin, GPIO.HIGH) # close the buzzer

time.sleep(0.1)
" " "Wait for 0.1 second. Change the switching frequency by changing this parameter. Note: Not
the sound frequency. Active Buzzer cannot change sound frequency." " "

37/106

Lesson 6 DC Motor
About this lesson:
In this lesson, we will learn to how to use L293D to drive a DC motor and make it rotate clockwise and
counterclockwise. Since the DC Motor needs a larger current, for safety purpose, here we use the Power
Supply Module to supply motors.
Introduction
Breadboard Power Supply

The small DC motor is likely to use more power than an UNO R3 board digital output can handle
directly. If we tried to connect the motor straight to an UNO R3 board pin, there is a good
chance that it could damage the UNO R3 board. So we use a power supply module provides
power supply

Product Specifications:

 Locking On/Off Switch

 LED Power Indicator

 Input voltage: 6.5-9v (DC) via 5.5mm x 2.1mm plug

 Output voltage: 3.3V/5v

 Maximum output current: 700 mA

 Independent control rail output. 0v, 3.3v, 5v to breadboard

 Output header pins for convenient external use

 Size: 2.1 in x 1.4 in

 USB device connector onboard to power external device

38/106

Setting up output voltage:

The left and right voltage output can be configured independently. To select the output voltage,
move jumper to the corresponding pins. Note: power indicator LED and the breadboard power
rails will not power on if both jumpers are in the “OFF” position

39/106

Important note:

Make sure that you align the module correctly on the breadboard. The negative pin(-) on
module lines up with the blue line(-) on breadboard and that the positive pin(+) lines up with
the red line(+). Failure to do so could result in you accidently reversing the power to your
project

L293D

This is a very useful chip. It can actually control two motors independently. We are just using
half the chip in this lesson, most of the pins on the right hand side of the chip are for controlling
a second motor.

Product Specifications:

• Featuring Unitrode L293 and L293D Products Now From Texas Instruments

• Wide Supply-Voltage Range: 4.5 V to 36 V

• Separate Input-Logic Supply

• Internal ESD Protection

• Thermal Shutdown

• High-Noise-Immunity Inputs

• Functionally Similar to SGS L293 and SGS L293D

• Output Current 1 A Per Channel (600 mA for L293D)

• Peak Output Current 2 A Per Channel (1.2 A for L293D)

• Output Clamp Diodes for Inductive T ransient Suppression (L293D)

40/106

Description/ordering information

The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide
bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to
provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both
devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping
motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a

Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with

drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input

is high, the associated drivers are enabled, and their outputs are active and in phase with their

inputs. When the enable input is low, those drivers are disabled, and their outputs are off and

in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or

bridge) reversible drive suitable for solenoid or motor applications.

Block diagram

41/106

V
CC1

1
1 16

1 2 15 1 M
0 0

1
3 14

4 13

M 5 12

6 11

2 3
11

7 10 00
8 9 1 M

0

V
CC2

I got fed up with indecipherable pinout diagrams within datasheets, so have
designed my own that I think gives more pertinent information.

There are 3 wires connected to the Arduino, 2 wires connected to the motor, and 1
wire connected to a battery.

To use this pinout:

The left hand side deals with the first motor, the right hand side deals with a
second motor. Yes, you can run it with only one motor connected.

42/106

Wiring diagram

43/106

Test instructions
This project is designed for learning how to use button to control LED. We first need
to read the state of button, and then determine whether turn on LED according to the
state of the button.
C_Code_6_DC_Motor
First, observe the project result, then analyze the code.
2. Use cd command to enter 6_DC_Motor directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/6_DC_Motor
2. Use the following command to compile the code “DC_Motor.c ” and generate
executable file “DC_Motor.c ”
gcc DC_Motor.c –o DC_Motor -lwiringPi
3. Then run the generated file “DC_Motor”.
sudo ./DC_Motor
The DC motor will turn for 5 seconds and then stop for 5 seconds, then for another 5
seconds, it will continue the process.

Code explanation
igitalWrite(MotorEnable, HIGH); // Enable the L239D

digitalWrite(MotorPin1, HIGH);
/* Set a high level for 2A(pin 7); since 1,2EN(pin 1) is in high level, 2Y will output
high level*/

digitalWrite(MotorPin2, LOW);
// Set a low level for 1A, then 1Y will output low level, and the motor will rotate.

for(i=0;i<3;i++){
delay(1000);
} // this loop is to delay for 3*1000ms

digitalWrite(MotorEnable, LOW)
// If 1,2EN (pin1) is in low level, L293D does not work. Motor stops rotating.

digitalWrite(MotorPin1, LOW)
digitalWrite(MotorPin2, HIGH)
// Reverse the current flow of the motor, then the motor will rotate reversely.

Python_Code_6_DC_Motor
First, observe the project result, then analyze the code.
1. Use cd command to enter 6_DC_Motor directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/6_DC_Motor
2. Use Python command to execute DC_Motor.py.
python DC_Motor.py
The DC motor will turn for 5 seconds and then stop for 5 seconds, then for another 5
seconds, it will continue the process.

44/106

Code explanation
GPIO.setup(MotorPin1, GPIO.OUT) # Set pin1 and pin2 for motor’s rotation
direction as output pin
GPIO.setup(MotorPin2, GPIO.OUT)
GPIO.setup(MotorEnable, GPIO.OUT) # Set pins for motor’s working condition as
output pin
GPIO.output(MotorEnable, GPIO.LOW) # Set the motor low level for initial state
GPIO.output(MotorEnable, GPIO.HIGH) # Set the motor in high level
GPIO.output(MotorPin1, GPIO.HIGH) # Set pin1 in high level and pin2 in low level
GPIO.output(MotorPin2, GPIO.LOW) # Make the motor rotate clockwise
time.sleep(5) # rotate for 5 seconds
GPIO.output(MotorEnable, GPIO.LOW) # Stop the motor
time.sleep(5) #wait for 5 seconds

45/106

Lesson 7 Servo
About this lesson:
In this lesson, we will learn how to control servo by raspberry pi.
Introduction
Servo is a type of geared motor that can only rotate 180 degrees. It is controlled by
sending electrical pulses from your raspberry pi. These pulses tell the servo what
position it should move to. The Servo has three wires, of which the brown one is the
ground wire and should be connected to the GND port of raspberry pi, the red one is
the power wire and should be connected to the 5v port, and the orange one is the
signal wire and should be connected to the GPIOx port.

We use 50Hz PWM signal with a duty cycle in a certain range to drive the servo.
The lasting time 0.5ms-2.5ms of PWM single cycle high level corresponds to the
servo angle 0 degrees - 180 degree linearly. Part of the corresponding values are as
follows:

High level time Servo angle
0.5ms 0 degree
1ms 45 degree
1.5ms 90 degree
2ms 135 degree
2.5ms 180 degree

46/106

Wiring diagram

47/106

Test instructions
In this experiment,raspberry pi control servo rotate from minimum angle to maximum
angle,and then make servo rotate from maximum angle to minimum angle

C_Code_7_Servo
First, observe the project result, then analyze the code.
3. Use cd command to enter 7_Servo directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/7_Servo
2. Use the following command to compile the code “Servo.c ” and generate
executable file “Servo.c ”
gcc Servo.c –o Servo -lwiringPi
3. Then run the generated file “Servo”.
sudo ./Servo
After the program is executed, the servo will rotate from 0 degrees to 180 degrees,
and then from 180 degrees to 0 degrees, circularly.

Code explanation
void servoInit(int pin)
{
softPwmCreate(pin, 0, 200);
}
/*initialization function for servo PWM pin,50 Hz pulse, namely cycle for 20ms, is
required to control Servo. In function softPwmCreate (int pin, int initialValue, int
pwmRange), the unit of third parameter pwmRange is 100US, namely 0.1ms. In order
to get the PWM with cycle of 20ms, the pwmRange shoulde be set to 200. So in
subfunction of servoInit (), we create a PWM pin with pwmRange 200.*/

void servoWrite(int pin, int angle)
{
if(angle > 180)
angle = 180;
if(angle < 0)
angle = 0;
softPwmWrite(pin,map(angle,0,180,SERVO_MIN_MS,SERVO_MAX_MS));
}
/*Specif a certain rotation angle (0-180) for the servo.In subfunction servoWrite (),
input directly angle (0-180 degrees), and map the angle to the pulse width and
then output it.*/

Python_Code_7_Servo
First, observe the project result, then analyze the code.
1. Use cd command to enter 7_Servo directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/7_Servo
2. Use Python command to execute Servo.py.
python Servo.py

48/106

After the program is executed, the servo will rotate from 0 degrees to 180 degrees,
and then from 180 degrees to 0 degrees, circularly.

Code explanation
p =GPIO.PWM((servoPin, , 50)) # Set Frequency to 50Hz

def loop ():
while True: :
for dc in range((0, , 181, , 1): #make servo rotate from 0°to 180°

servoWrite((dc)) # Write to servo
time. .sleep((0.001))

time. .sleep((0.5))
for dc in range((180, , - -1, , - -1): #make servo rotate from 180°to 0°

servoWrite((dc))
time. .sleep((0.001))

time. .sleep((0.5))
" " "in the "while" cycle of main function, use two "for" cycle to make servo

rotate from 0 degrees to 180 degrees, and then from 180 degrees to 0 degrees." " "

49/106

Lesson 8 LCD1602
About this lesson:
In this lesson, you will learn how to wire up and use an alphanumeric LCD display.
The display has an LED backlight and can display two rows with up to 16 characters
on each row. You can see the rectangles for each character on the display and the
pixels that make up each character. The display is just white on blue and is intended
for showing text.

Introduction
LCD1602
Introduction to the pins of LCD1602:
VSS: A pin that connects to ground
VDD: A pin that connects to a +5V power supply
VO: A pin that adjust the contrast of LCD1602
RS: A register select pin that controls where in the LCD’s memory you are writing data to.
You can select either the data register, which holds what goes on the screen, or an instruction
register, which is where the LCD’s controller looks for instructions on what to do next.
R/W: A Read/Write pin that selects reading mode or writing mode
E: An enabling pin that, when supplied with low-level energy, causes the LDC module to
execute relevant instructions.
D0-D7：Pins that read and write data
A and K: Pins that control the LED backlight

The serial-to-parallel chip used in this module is PCF8574(PCF8574A), and its default I2C
address is 0x27(0x3F),and you can view all the RPI bus on your I2C device address through
command "i2cdetect –y 1" to. (refer to the "configuration I2C" section below) below is the
PCF8574 pin schematic diagram and the block pin diagram:

50/106

So, we can use just 4 pins to control LCD1602 with 16 pins easily through I2C interface.In
this project, we will use I2CLCD1602 to display some static characters and dynamic
variables.

Wiring diagram

51/106

Test instructions
This code will get the CPU temperature and system time of raspberry pi, display them
on LCD1602.
Before uploading the code, you need to open the Raspberry Pi I2C interface with the
following instructions.
sudo raspi-config

52/106

C_Code_8_LCD1602
First, observe the project result, then analyze the code.
4. Use cd command to enter 8_LCD1602 directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/8_LCD1602
2. Use the following command to compile the code “LCD1602.c ” and generate
executable file “LCD1602.c ”
gcc LCD1602.c -o LCD1602 -lwiringPi -lwiringPiDev
3. Then run the generated file “LCD1602”.
sudo ./LCD1602
After the program is executed, LCD1602 screen will display current CPU temperature
and system time. If there is no display or the display is not clear, adjust potentiometer
of PCF8574 module to adjust the contrast of LCD1602 until the screen can display
clearly.

Code explanation
int lcdInit (int rows, int cols, int bits, int rs, int strb,int d0, int d1, int d2, int d3, int d4,
int d5, int d6, int d7) ;
/*This is the main initialization function and must be called before you use any other
LCD functions. Rows and cols are the rows and columns on the display (e.g. 2, 16 or

53/106

4,20). Bits is the number of bits wide on the interface (4 or 8). The rs and strb
represent the pin numbers of the displays RS pin and Strobe (E) pin. The parameters
d0 through d7 are the pin numbers of the 8 data pins connected from the Pi to the
display. Only the first 4 are used if you are running the display in 4-bit mode.
The return value is the ‘handle’ to be used for all subsequent calls to the lcd library
when dealing with that LCD, or -1 to indicate a fault. (Usually incorrect parameters)*/

lcdPosition (int handle, int x, int y);
//Set the position of the cursor for subsequent text entry.

lcdPutchar (int handle, uint8_t data)
lcdPuts (int handle, char *string)
lcdPrintf (int handle, char *message, …)
/*These output a single ASCII character, a string or a formatted string using the usual
printf formatting commands.*/

Python_Code_8_LCD1602
First, observe the project result, then analyze the code.
1. Use cd command to enter 8_LCD1602 directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/8_LCD1602
2. Use Python command to execute LCD1602.py.
python LCD1602.py
After the program is executed, LCD1602 screen will display current CPU temperature
and system time. If there is no display or the display is not clear, adjust potentiometer
of PCF8574 module to adjust the contrast of LCD1602 until the screen can display
clearly.

Code explanation
from PCF8574 import PCF8574_GPIO
" " "This module provides two classes PCF8574_I2C and PCF8574_GPIO.
Class PCF8574_I2C: provides reading and writing method for PCF8574.
Class PCF8574_GPIO: provides a standardized set of GPIO functions. More
information can be viewed through opening PCF8574.py." " "

from Adafruit_LCD1602 import Adafruit_CharLCD
" " "This module provides the basic operation method of LCD1602, including class
Adafruit_CharLCD. Some
member functions are described as follows:
def begin(self, cols, lines): set the number of lines and columns of the screen.
def clear(self): clear the screen
def setCursor(self, col, row): set the cursor position
def message(self, text): display contents
More information can be viewed through opening Adafruit_CharLCD.py." " "

54/106

Lesson 9 PIR motion sensor
About this lesson:
In this lesson you will learn how to use a PIR movement detector with an raspberry
pi. The raspberry pi is the heart of this project. It 'listens' to the PIR sensor and when
motion is detected, instructs the LED to light on or shut off.

Introduction
PIR sensors are more complicated than many of the other sensors explained in this tutorial
(like photocells, FSRs and tilt switches) because there are multiple variables that affect the
sensors input and output. .
The PIR sensor itself has two slots. Each slot is made of a special material that is sensitive to
IR. The lens used here is not really doing much and so we see that the two slots can 'see' out
past some distance (basically the sensitivity of the sensor). When the sensor is idle, both slots
detect the same amount of IR, the ambient amount radiated from the room or walls or
outdoors. When a warm body like a human or an animal passes by, it first intercepts one half
of the PIR sensor, which causes a positive differential change between the two halves. When
the warm body leaves the sensing area, the reverse happens, whereby the sensor generates a
negative differential change. These change pulses are what is detected.

55/106

Pin or Control Function

Time Delay Adjust
Sets how long the output remains high after detecting motion....
Anywhere from 5
seconds to 5 minutes.

Sensitivity Adjust Sets the detection range.... from 3 meters to 7 meters
Trigger Selection Set for single or repeatable triggers.
Jumper
Ground pin Ground input

Output Pin
Low when no motion is detected.. High when motion is detected. High
is 3.3V

Power Pin 5 to 20 VDC Supply input

HC SR501 PIR Functional Description

The SR501 will detect infrared changes and if interpreted as motion, will set its output low.
What is or is not interpreted as motion is largely dependent on user settings and adjustments.
Device Initialization

The device requires nearly a minute to initialize. During this period, it can and often
will output false detection signals. Circuit or controller logic needs to take this
initialization period into consideration.
Device Area of Detection
The device will detect motion inside a 110 degree cone with a range of 3 to 7 meters

56/106

HC SR501 View Area
PIR Range (Sensitivity) Adjustment

As mentioned, the adjustable range is from approximately 3 to 7 meters. The
illustration below shows this adjustment.

HC SR501 Sensitivity Adjust Time Delay Adjustment

The time delay adjustment determines how long the output of the PIR sensor module
will remain high after detection motion. The range is from about 3 seconds to five
minutes.

57/106

HC SR501 Time Delay Adjustment
3 Seconds Off After Time Delay Completes – IMPORTANT

The output of this device will go LOW (or Off) for approximately 3 seconds AFTER
the time delay completes. In other words, ALL motion detection is blocked during
this three second period.

Wiring diagram

58/106

59/106

Test instructions
In this project, we use infrared motion sensor to control LED, and take infrared
motion sensor as a switch, so the code very similar to front project "Button&LED" in
logic. The difference is that, when infrared motion sensor detects change, it will
output high level; when button is pressed, it will output low level. When the sensor
output high level, the LED will be turned on, or it will be turned
off.C_Code_9_PIR_motion_sensor
First, observe the project result, then analyze the code.
5. Use cd command to enter 9_PIR motion sensor directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/9_PIR_motion_sensor
2. Use the following command to compile the code “PIR motion sensor.c ” and
generate executable file “PIR motion sensor.c ”
gcc PIR_motion_sensor.c -o PIR motion sensor -lwiringPi
3. Then run the generated file “PIR motion sensor”.
sudo ./PIR_motion_sensor
After the program is executed, try to leave away from or get closed to the Motion
Sensor Infrared and observe whether the LED will be turned on or off. The terminal
window will print out the state of LED constantly. As is shown below:

Python_Code_9_PIR_motion_sensor
First, observe the project result, then analyze the code.
1. Use cd command to enter 9_PIR_motion_sensor directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/9_PIR_motion_sensor
2. Use Python command to executePIR_motion_sensor.py.
python PIR_motion_sensor.py
After the program is executed, try to leave away from or get closed to the Motion
Sensor Infrared and observe whether the LED will be turned on or off. The terminal
window will print out the state of LED constantly. As is shown below:

60/106

Lesson 10 Stepper Motor
About this lesson:
In this lesson, you will learn a fun and easy way to drive a stepper motor.The
stepper we are using comes with its own driver board making it easy to connect to
our raspberry pi.

Introduction

Stepper Motor
A stepper motor is an electromechanical device which converts electrical pulses
into discrete mechanical movements. The shaft or spindle of a stepper motor rotates
in discrete step increments when electrical command pulses are applied to it in the
proper sequence. The motors rotation has several direct relationships to these
applied input pulses. The sequence of the applied pulses is directly related to the
direction of motor shafts rotation. The speed of the motor shafts rotation is directly
related to the frequency of the input pulses and the length of rotation is directly
related to the number of input pulses applied. One of the most significant
advantages of a stepper motor is its ability to be accurately controlled in an open
loop system. Open loop control means no feedback information about position is
needed. This type of control eliminates the need for expensive sensing and
feedback devices such as optical encoders. Your position is known simply by
keeping track of the input step pulses.

61/106

Stepper motor 28BYJ-48 Parameters
 Model: 28BYJ-48
 Rated voltage: 5VDC
 Number of Phase: 4
 Speed Variation Ratio: 1/64
 Stride Angle: 5.625° /64
 Frequency: 100Hz
 DC resistance: 50Ω±7%(25℃)
 Idle In-traction Frequency: > 600Hz
 Idle Out-traction Frequency: > 1000Hz
 In-traction Torque >34.3mN.m(120Hz)
 Self-positioning Torque >34.3mN.m
 Friction torque: 600-1200 gf.cm
 Pull in torque: 300 gf.cm
 Insulated resistance >10MΩ(500V)
 Insulated electricity power：600VAC/1mA/1s
 Insulation grade：A
 Rise in Temperature <40K(120Hz)
 Noise <35dB(120Hz,No load,10cm)

62/106

The bipolar stepper motor usually has four wires coming out of it. Unlike unipolar
steppers, bipolar steppers have no common center connection. They have two
independent sets of coils instead. You can distinguish them from unipolar steppers
by measuring the resistance between the wires. You should find two pairs of wires
with equal resistance. If you’ve got the leads of your meter connected to two wires
that are not connected (i.e. not attached to the same coil), you should see infinite
resistance (or no continuity).

ULN2003 Driver Boar

63/106

Product Description
 Size: 42mmx30mm
 Use ULN2003 driver chip, 500mA

 A. B. C. D LED indicating the four phase stepper motor working
condition. White jack is the four phase stepper motor standard jack.

 Power pins are separated
 We kept the rest pins of the ULN2003 chip for your further prototyping.

The simplest way of interfacing a unipolar stepper to Arduino is to use a breakout
for ULN2003A transistor array chip. The ULN2003A contains seven Darlington
transistor drivers and is somewhat like having seven TIP120 transistors all in one
package. The ULN2003A can pass up to 500 mA per channel and has an internal
voltage drop of about 1V when on. It also contains internal clamp diodes to
dissipate voltage spikes when driving inductive loads. To control the stepper,
apply voltage to each of the coils in a specific sequence.

The sequence would go like this:

Here are schematics showing how to interface a unipolar stepper motor to four
controller pins using a ULN2003A, and showing how to interface using four com

64/106

Wiring diagram

65/106

Test instructions
This code use four step four pat mode to drive the stepping motor forward and reverse
direction.
C_Code_10_Stepper_Motor
First, observe the project result, then analyze the code.
1.Use cd command to enter 10_Stepper_Motor directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/10_Stepper_Motor
2. Use the following command to compile the code “Stepper_Motor.c ” and generate
executable file “Stepper_Motor.c ”
gcc Stepper_Motor.c -o Stepper_Motor -lwiringPi
3. Then run the generated file “Stepper_Motor”.
sudo ./Stepper_Motor
After the program is executed, the stepping motor will rotate 360° clockwise and then
360° anticlockwise,circularly

Code explanation
void moveOnePeriod(int dir,int ms){}

66/106

/*Subfunction moveOnePeriod ((int dir,int ms) will drive the stepping motor rotating
four step clockwise or anticlockwise, four step as a cycle. Where parameter "dir"
indicates the rotation direction, if "dir" is 1, the servo will rotate forward, otherwise it
rotates to reverse direction. Parameter "ms" indicates the time between each two steps.
The "ms" of stepping motor used in this project is 3ms (the shortest time), less than
3ms will exceed the speed limit of stepping motor resulting in that motor can not
rotate.*/

void motorStop()
{
int i;
for(i=0;i<4;i++)
{
digitalWrite(motorPins[i],LOW);
}

}
//function used to stop rotating

void moveSteps(int dir, int ms, int steps){}
/*Subfunction moveSteps (int dir, int ms, int steps) is used to specific cycle number of
stepping motor.*/

Python_Code_10_Stepper_Motor
First, observe the project result, then analyze the code.
1. Use cd command to enter 10_Stepper_Motor directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/10_Stepper_Motor
2. Use Python command to execute Stepper_Motor.py.
python Stepper_Motor.py
After the program is executed, the stepping motor will rotate 360° clockwise and then
360° anticlockwise,circularly

Code explanation
def motorStop (): #Subfunction motorStop () is used to stop the stepping motor

def moveSteps((direction,ms,steps)
" " "Subfunction moveSteps (direction, ms, steps) is used to specific cycle number of
stepping motor.
" " "

def moveOnePeriod((direction, ,ms):
" " "Subfunction moveOnePeriod (direction, ms) will drive the stepping motor
rotating four step clockwise or anticlockwise, four step as a cycle. Where parameter
"dir" indicates the rotation direction, if "dir" is 1, the servo will rotate forward,
otherwise it rotates to reverse direction. Parameter "ms" indicates the time between
each two steps. The "ms" of stepping motor used in this project is 3ms (the shortest
time), less than 3ms will exceed the speed limit of stepping motor resulting in that
motor can not rotate."

67/106

Lesson 11 Segment Display
About this lesson:
In this lesson, we will use the 74HC595 shift register to control the segment display.
The segment display will show number from 9-0.

Introduction
Seven segment display
Below is the seven-segment pin diagram.

68/106

0-9 ten digits correspond with each segment are as follows (the following table
applies common cathode seven segment display device, if you are using a common
anode, the table should be replaced every 1 0 0 should all replaced by 1):

Display digital dp a b c d e f g

0 0 1 1 1 1 1 1 0

1 0 0 1 1 0 0 0 0

2 0 1 1 0 1 1 0 1

3 0 1 1 1 1 0 0 1

4 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1

6 0 1 0 1 1 1 1 1

7 0 1 1 1 0 0 0 0

8 0 1 1 1 1 1 1 1

9 0 1 1 1 1 0 1 1

74HC595 Shift Register:

The shift register is a type of chip that holds what can be thought of as eight
memory locations, each of which can either be a 1 or a 0. To set each of these values
on or off, we feed in the data using the 'Data' and 'Clock' pins of the chip.

69/106

70/106

Pins of 74HC595 and their functions:
Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment

display
Q7: Series output pin, connected to DS of another 74HC595 to connect multiple

74HC595s in series
MR: Reset pin, active at low level; here it is directly connected to 5V to keep the chip

from resetting.
SH_CP: Time sequence input of shift register. On the rising edge, the data in shift

register moves successively one bit, i.e. data in Q1 moves to Q2, and so
forth. While on the falling edge, the data in shift register remain unchanged.

ST_CP: Time sequence input of storage register. On the rising edge, data in the shift
register moves into memory register.

OE: Output enable pin, active at low level; here connected to GND to keep 74HC595
in output enable state.

DS: Serial data input pin
VCC: Positive supply voltage
GND: Ground

71/106

Wiring diagram

72/106

Test instructions
In this code ,Raspberry Pi controls 7 digits to display the specified number.
C_Code_11_Segment_Display
First, observe the project result, then analyze the code.
6. Use cd command to enter 11_Segment_Display directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/11_Segment_Display
2. Use the following command to compile the code “Segment_Display.c ” and
generate executable file “Segment_Display.c ”
gcc Segment_Display.c -o Segment_Display -lwiringPi
3. Then run the generated file “Segment_Display”.
sudo ./Segment_Display
The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
F) You should see the 7-segment display from 0 to 9 and A to F

Python_Code_11_Segment_Display
First, observe the project result, then analyze the code.
1. Use cd command to enter 8_LCD1602 directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/11_Segment_Display
2. Use Python command to execute Segment_Display.py.
python Segment_Display.py
After the program is executed, SevenSegmentDisplay starts to display the character
“0”- “F” successivel

73/106

Lesson 12 DHT11
About this lesson:
In this lesson, we will learn how to use a DHT11 Temperature and Humidity Sensor.
It’s accurate enough for most projects that need to keep track of humidity and
temperature readings.

Introduction
Temp and humidity sensor:

DHT11 digital temperature and humidity sensor is a composite Sensor which
contains a calibrated digital signal output of the temperature and humidity. The
dedicated digital modules collection technology and the temperature and humidity
sensing technology are applied to ensure that the product has high reliability and

74/106

excellent long-term stability. The sensor includes a resistive sense of wet components
and a NTC temperature measurement devices, and connects with a
high-performance 8-bit microcontroller.

Pin Description:

1. the VDD power supply 3.5～5.5V DC

2. DATA serial data, a single bus

3. NC, empty pin

4. GND ground, the negative power
Wiring diagram

75/106

Test instructions
This code will get the CPU temperature and system time of raspberry pi, display them
on LCD1602.
C_Code_12_DHT11
First, observe the project result, then analyze the code.
1.Use cd command to enter 12_DHT11 directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/12_DHT11
2. Code of this project contains a custom header file. Use the following command to
compile the code DHT11.cpp and DHT.cpp and generate executable file DHT11.
And the custom header file will be compiled at the same time.
gcc DHT.cpp DHT11.cpp -o DHT11 -lwiringPi
3. Then run the generated file “DHT11 ”.
sudo ./DHT11
After the program is executed, the terminal window will display the current total
number of reading times, the read state, as well as the temperature and humidity
value. As is shown below:

76/106

Code explanation
DHT dht;
/*we use a custom library file "DHT.hpp". It is located in the same directory with
program files "DHT11.cpp" and "DHT.cpp", and methods for reading DHT sensor
are provided in the library file. By using this library, we can easily read the DHT
sensor. First create a DHT class object in the code.*/

chk = dht.readDHT11((DHT11_Pin);
/*use chk = dht.readDHT11 (DHT11_Pin) to read the DHT11, and determine
whether the data read is normal according to the return value "chk".*/

class DHT{ {
public:
double humidity, ,temperature; ; //use to store temperature and humidity data read
int readDHT11((int pin); //read DHT11
private:
int bits[[5]; //Buffer to receiver data
int readSensor((int pin, ,int wakeupDelay);
};
/*Library file "DHT.hpp" contains a DHT class and his public member functions int
readDHT11 (int pin) is used to read sensor DHT11 and store the temperature and
humidity data read to member variables double humidity and temperature. The
implementation method of the function is included in the file "DHT.cpp"*/

Python_Code_12_DHT11
First, observe the project result, then analyze the code.
1. Use cd command to enter 12_DHT11 directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/12_DHT11
2. Use Python command to execute DHT11.py.
python DHT11.py

77/106

After the program is executed, the terminal window will display the current total
number of reading times, the read state, as well as the temperature and humidity
value. As is shown below:

Code explanation
import RPi. .GPIO as GPIO
import time
import LAFVIN_DHT as DHT
" " "
we use a module "LAFVIN_DHT.py", which provide method of reading sensor
DHT. It is located in the same directory with program files "DHT11.py". By using
this library, we can easily read the DHT sensor. First create a DHT class object in
the code..
This is a Python module for reading the temperature and humidity data of the DHT
sensor. Partial
functions and variables are described as follows:
Variable humidity: store humidity data read from sensor
Variable temperature: store temperature data read from sensor
def readDHT11 (pin): read the temperature and humidity of sensor DHT11, and
return values used todetermine whether the data is normal.
" " "

dht = DHT. .DHT((DHTPin)) #create a DHT class object

78/106

Lesson 13 Ultrasonic
About this lesson:
Ultrasonic sensor is great for all kind of projects that need distance measurements,
avoiding obstacles as examples.

Introduction
Ultrasonic sensor
Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact measurement
function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic
transmitters, receiver and control circuit. The basic principle of work:
(1) Using IO trigger for at least 10us high level signal,

(2) The Module automatically sends eight 40 kHz and detect whether there is a
pulse signal back.

(3) IF the signal back, through high level , time of high output IO duration is the
time from sending ultrasonic tore turning.
Test distance = (high level time × velocity of sound (340m/s) /2

The Timing diagram is shown below. You only need to supply a short 10us pulse to
the trigger input to start the ranging, and then the module will send out an 8 cycle
burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is
pulse width and the range in proportion .You can calculate the range through the
time interval between sending trigger signal and receiving echo signal. Formula: us
/ 58 = centimeters or us / 148 =inch; or: the range = high level time * velocity
(340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent
trigger signal to the echo signal.

79/106

Wiring diagram

80/106

Test instructions
C_Code_13_Ultrasonic
First, observe the project result, then analyze the code.
7. Use cd command to enter 13_Ultrasonic directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/13_Ultrasonic
2. Use the following command to compile the code “Ultrasonic.c ” and generate
executable file “Ultrasonic.c ”
gcc Ultrasonic.c -o Ultrasonic -lwiringPi
3. Then run the generated file “Ultrasonic”.
sudo ./Ultrasonic

81/106

After the program is executed, make the detector of ultrasonic ranging module aim at
the plane of an object,then the distance between the ultrasonic module and the object
will be displayed in the terminal. As is shown below:

Code explanation
int pulseIn(int pin, int level, int timeout);
/*Return the length of the pulse (in microseconds) or 0 if no pulse is completed before
the timeout (unsigned long).*/

#define timeOut MAX_DISTANCE*60
/*If the module does not return high level, we can not wait forever. So we need to
calculate the lasting time over maximum distance, that is,
time Out. timOut= 2*MAX_DISTANCE/100/340*1000000.
The constant part behind is approximately equal to 58.8.*/

Python_Code_13_Ultrasonic
First, observe the project result, then analyze the code.
1. Use cd command to enter 13_Ultrasonic directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/13_Ultrasonic
2. Use Python command to execute Ultrasonic.py.
python Ultrasonic.py
After the program is executed, make the detector of ultrasonic ranging module aim at
the plane of an object,then the distance between the ultrasonic module and the object
will be displayed in the terminal. As is shown below:

82/106

Code explanation
timeOut = = MAX_DISTANCE* *60
" " "If the module does not return high level, we can not wait forever. So we need to
calculate the lasting time over maximum distance, that is,
time Out. timOut= 2*MAX_DISTANCE/100/340*1000000.
The constant part behind is approximately equal to 58.8." " "

def pulseIn(pin,level,timeOut):
" " "Return the length of the pulse (in microseconds) or 0 if no pulse is completed
before the timeout (unsigned long)."

83/106

Lesson 14 Membrane Switch Module
About this lesson:
In this lesson,In this project, we will go over how to integrate a keyboard with a
raspberry pi so that the raspberry pi can read the keys being pressed by a user.

Introduction
Membrane Switch Module
Keypads are used in all types of devices, including cell phones, fax machines, microwaves,
ovens, door locks, etc. They're practically everywhere. Tons of electronic devices use them
for user input.
So knowing how to connect a keypad to a microcontroller such as an UNO R3 board is very
valuable for building many different types of commercial products.
At the end when all is connected properly and programmed, when a key is pressed, it shows
up at the Serial Monitor on your computer. Whenever you press a key, it shows up on the
Serial Monitor. For simplicity purposes, we start at simply showing the key pressed on the
computer.
For this project, the type of keypad we will use is a matrix keypad. This is a keypad that
follows an encoding scheme that allows it to have much less output pins than there are keys.
For example, the matrix keypad we are using has 16 keys (0-9, A-D, *, #), yet only 8 output
pins. With a linear keypad, there would have to be 17 output pins (one for each key and a
ground pin) in order to work. The matrix encoding scheme allows for less output pins and
thus much less connections that have to make for the keypad to work. In this way, they are
more efficient than linear keypads, being that they have less wiring.

84/106

Wiring diagram

85/106

86/106

Test instructions
This code is used to obtain all key code of 4x4 Matrix Keypad, when one of keys is
pressed, the key code will
be printed out in the terminal window.
C_Code_14_Membrane_Switch_Module
First, observe the project result, then analyze the code.
8. Use cd command to enter 14_Membrane Switch Module directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/14_Membrane_Switch_Module
2. Use the following command to compile the code
“Membrane_Switch_Module.c ” and generate executable file
“Membrane_Switch_Module.c ”
gcc Membrane_Switch_Module.cpp Keypad.cpp Key.cpp -o Membrane_Switch_Module
-lwiringPi
3. Then run the generated file “Membrane_Switch_Module”.
sudo ./Membrane_Switch_Module
After the program is executed, press any key on the MatrixKeypad, the terminal
will print out the corresponding key code. As is shown below:

Code explanation
#include "Keypad.hpp"
/*In this project code, we use two custom library file "Keypad.hpp" and "Key.hpp".
They are located in the same directory with program files "MatrixKeypad.cpp",
"Keypad.cpp" and "Key.cpp". Library Keypad is transplanted from the Arduino
library Keypad. And this library file provides a method to read the keyboard. By
using this library, we can easily read the matrix keyboard.*/

Keypad keypad = = Keypad((makeKeymap((keys), rowPins, , colPins, , ROWS, ,
COLS);/*based on the above information, instantiate a Keypad class object to
operate the matrix keyboard.*/

class Keypad
Keypad((char * * userKeymap, , byte * * row, , byte * * col, , byte numRows, ,
byte numCols);

87/106

/*Constructor, the parameters are: key code of keyboard, row pin, column pin, the
number of rows, the number of columns.*/

char getKey ();
//Get the key code of the pressed key. If no key is pressed, the return value is
NULL.

void setDebounceTime((uint);
/*Set the debounce time. And the default time is 10ms.*/

void setHoldTime((uint);
/*Set the time when the key holds stable state after pressed.*/

bool isPressed((char keyChar);
/*Judge wether the key with code "keyChar" is pressed.*/

char waitForKey ();
/*Wait for a key to be pressed, and return key code of the pressed key.*/

KeyState getState ();
/*Get state of the keys.*/

bool keyStateChanged ();
/*Judge whether there is a change of key state, then return True or False.*/

Python_Code_14_Membrane_Switch_Module
First, observe the project result, then analyze the code.
1. Use cd command to enter 8_LCD1602 directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/14_Membrane_Switch_Module
2. Use Python command to execute Membrane_Switch_Module.py.
python Membrane_Switch_Module.py
After the program is executed, press any key on the MatrixKeypad, the terminal
will print out the corresponding key code. As is shown below:

88/106

Code explanation
import Keypad
" " ""Keypad.py" is located in the same directory with program file
"MatrixKeypad.py". And this library file, which is transplanted from Arduino
function library Keypad, provides a method to read the keyboard. By using this
library, we can easily read the matrix keyboard." " "

class Keypad
def __init__((self, , usrKeyMap, , row_Pins, , col_Pins, , num_Rows, ,
num_Cols):
" " "Constructed function, the parameters are: key code of keyboard, row pin,
column pin, the number of rows, the number of columns." " "

def getKey((self):
#Get a pressed key. If no key is pressed, the return value is keypad NULL.

def setDebounceTime((self, , ms):
#Set the debounce time. And the default time is 10ms.

def setHoldTime((self, , ms):
#Set the time when the key holds stable state after pressed.

def isPressed((keyChar):
#Judge wether the key with code "keyChar" is pressed.

def waitForKey ():
#Wait for a key to be pressed, and return key code of the pressed key.

def getState ():
#Get state of the keys.

def keyStateChanged ():
#Judge whether there is a change of key state, then return True or False.

89/106

Lesson 15 GY-521 SENSOR
About this lesson:
In this lesson, we will learn how to use GY-521 module which is one of the best
IMU (Inertia Measurement Unit) sensors, compatible with Arduino. IMU sensors
like the GY-521 are used in self balancing robots, UAVs, smart phones, etc.

Introduction
GY-521 SENSOR

The InvenSense GY-521 sensor contains a MEMS accelerometer and a MEMS gyro in
a single chip. It is very accurate, as it contains 16-bits analog to digital conversion
hardware for each channel. Therefore it captures the x, y, and z channel at the same
time. The sensor uses the I2C-bus to interface with the Arduino.

The GY-521 is not expensive, especially given the fact that it combines both an
accelerometer and a gyro.

90/106

IMU sensors are one of the most inevitable type of sensors used today in all kinds of
electronic gadgets. They are seen in smart phones, wearables, game controllers, etc.
IMU sensors help us in getting the attitude of an object, attached to the sensor in
three dimensional space. These values usually in angles, thus help us to determine
its attitude. Thus, they are used in smart phones to detect its orientation. And also in
wearable gadgets like the nike fuel band or fit bit, which use IMU sensors to track
movement.
How does it work?

IMU sensors usually consists of two or more parts. Listing them by priority, they are :
accelerometer, gyroscope, magnetometer and altimeter. The GY-521 is a 6 DOF
(Degrees of Freedom) or a six axis IMU sensor, which means that it gives six values as
output. Three values from the accelerometer and three from the gyroscope. The GY-521
is a sensor based on MEMS (Micro Electro Mechanical Systems) technology. Both the
accelerometer and the gyroscope is embedded inside a single chip. This chip uses I2C
(Inter Integrated Circuit) protocol for communication
How does an accelerometer work?

91/106

An accelerometer works on the principle of piezo electric effect. Here, imagine a
cuboidal box, having a small ball inside it, like in the picture above. The walls of
this box are made with piezo electric crystals. Whenever you tilt the box, the ball is
forced to move in the direction of the inclination, due to gravity. The wall with
which the ball collides, creates tiny piezo electric currents. There are totally, three
pairs of opposite walls in a cuboid. Each pair corresponds to an axis in 3D space: X,
Y and Z axes. Depending on the current produced from the piezo electric walls, we
can determine the direction of inclination and its magnitude. For more information
check this.

92/106

How does a gyroscope work?

Gyroscopes work on the principle of Coriolis acceleration. Imagine that there is a fork
like structure, which is in constant back and forth motion. It is held in place using
piezo electric crystals. Whenever, you try to tilt this arrangement, the crystals
experience a force in the direction of inclination. This is caused as a result of the
inertia of the moving fork. The crystals thus produce a current in consensus with the
piezo electric effect, and this current is amplified. The values are then refined by the
host microcontroller.

93/106

Wiring diagram

94/106

Test instructions
C_Code_15_MPU6050
First, observe the project result, then analyze the code.
9. Use cd command to enter 15_MPU6050 directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/15_MPU6050
2. Use the following command to compile the code “MPU6050.c ” and generate
executable file “15_MPU6050.c ”
gcc 15_MPU6050.cpp MPU6050.cpp I2Cdev.cpp –o MPU6050
3. Then run the generated file “MPU6050”.
sudo ./MPU6050
After the program is executed, the terminal will display the original acceleration and
gyroscope data of MPU6050, as well as the conversion to gravity acceleration and
angular velocity as the unit of data. As shown in the following figure:

Code explanation
Class MPU6050
This is a class library used to operate MPU6050, which can directly read and set
MPU6050. Here are some
member functions:
MPU6050 ()
//Constructor. The parameter is I2C address, and the default I2C address is 0x68.
void initialize ();
/*Initialization function, used to wake up MPU6050. Range of accelerometer is ±2g
and range of gyroscope is ±250 degrees/sec.*/
void getMotion6((int16_t* * ax, , int16_t* * ay, , int16_t* * az, , int16_t* * gx, ,
int16_t* * g gy y, , int16_t* * gz);
//Get the original data of accelerometer and gyroscope.
int16_t getTemperature ();
Get the original temperature data of MPU6050.

Python_Code_15_MPU6050
First, observe the project result, then analyze the code.
1. Use cd command to enter 15_MPU6050 directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/15_MPU6050
2. Use Python command to execute 15_MPU6050.py.
python 15_MPU6050.py
After the program is executed, the terminal will display the original acceleration and

95/106

gyroscope data of MPU6050, as well as the conversion to gravity acceleration and
angular velocity as the unit of data. As shown in the following figure:

Code explanation
mpu = = MPU6050. .MPU6050
" " "A module "MPU6050.py" is used in the code. The module include a class used to
operate MPU6050. When used, first instantiate an object." " "

Class MPU6050
This is a class library used to operate MPU6050, which can directly read and set
MPU6050. Here are some member functions:
def _init_((self, a_bus= =1, a_ad dress= =C.MPU6050_DEFAULT_ADDRESS, ,

a_xAOff== None, a_yAOff== None, a_zAOff== None,a_xGOff==None,
a_yGOff= = None,a_zGOff= = None, a_debug= = False):

#Constructor
def dmp_initialize((self):
" " "Initialization function, used to wake up MPU6050. Range of accelerometer is ±2g
and range of gyroscope is ±250 degrees/sec." " "

def get_acceleration((self): & def get_rotation((self):
#Get the original data of accelerometer and gyroscope.

96/106

Lesson 16 LED Matrix
About this lesson:
In this lesson, you will learn how to wire up and use an alphanumeric LCD display.
The display has an LED backlight and can display two rows with up to 16 characters
on each row. You can see the rectangles for each character on the display and the
pixels that make up each character. The display is just white on blue and is intended
for showing text.

Introduction
With low-voltage scanning, LED dot-matrix displays have advantages such as power
saving, long service life, low cost, high brightness, wide angle of view, long visual
range, waterproof, and numerous specifications. LED dot-matrix displays can meet
the needs of different applications and thus have a broad development prospect. This
time, we will conduct an LED dot-matrix experiment to experience its charm
firsthand.
The external view of a dot-matrix is shown as follows:

97/106

The display principle of the 8*8 dot-matrix:
The 8*8 dot-matrix is made up of sixty-four LEDs, and each LED is placed at the
cross point of a row and a column. When the electrical level of a certain row is 1 and
the electrical level of a certain column is 0, the corresponding LED will light up. If
you want to light the LED on the first dot, you should set pin 9 to high level and pin
13 to low level. If you want to light LEDs on the first row, you should set pin 9 to
high level and pins 13, 3, 4, 10, 6, 11, 15 and 16 to low level. If
you want to light the LEDs on the first column, set pin 13 to low level and pins 9, 14,
8, 12, 1, 7, 2 and 5 to high level.
The internal view of a dot-matrix is shown as follows:

The principle of 74HC595 has been previously illustrated. One chip is used to control
the rows of the dot-matrix while the other chip is used to control the columns.

98/106

Wiring diagram

99/106

Test instructions
C_Code_16_LED_Matrix
First, observe the project result, then analyze the code.
10. Use cd command to enter 8_LCD1602 directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/16_LED_Matrix
2. Use the following command to compile the code “LED_Matrix.c ” and generate
executable file “LED_Matrix.c ”
gcc LED_Matrix.c -o LED_Matrix -lwiringPi
3. Then run the generated file “LED_Matrix”.
sudo ./LED_Matrix
After completing the upload of the program, you will see the shape of the LED
Matrix display in the code.

Code explanation
void hc595_out(){}
/*hc595_out(); // Update the output of the 74HC595; output the data controlled by
both two HC595, and the dot matrix will show the pattern.*/

void hc595_in(unsigned char dat){}
// Write an 8-bit data to the shift register of the 74HC595

Python_Code_16_LED_Matrix
First, observe the project result, then analyze the code.
1. Use cd command to enter 16_LED_Matrix directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/16_LED_Matrix
2. Use Python command to execute LED_Matrix.py.
python LED_Matrix.py
After completing the upload of the program, you will see the shape of the LED
Matrix display in the code.

Code explanation
def get_matrix(row_buffer, col_buffer, max_row=8, max_col=8):
" " "The functions is to
print the pattern on the matrix by the 2D array on the command line interface
(CLI)." " "

def hc595_shift(dat):
Shift the data to 74HC595

100/106

Lesson 17 IR Control
About this lesson:
In this lesson, we learn how to read the key value of the infrared remote control
through the Raspberry Pi.
Introduction
IR RECEIVER SENSOR:

IR detectors are little microchips with a photocell that are tuned to listen to infrared
light. They are almost always used for remote control detection - every TV and
DVD player has one of these in the front to listen for the IR signal from the clicker.
Inside the remote control is a matching IR LED, which emits IR pulses to tell the
TV to turn on, off or change channels. IR light is not visible to the human eye,
which means it takes a little more work to test a setup.
There are a few difference between these and say a CdS Photocells:

IR detectors are specially filtered for IR light, they are not good at detecting visible
light. On the other hand, photocells are good at detecting yellow/green visible light,
and are not good at IR light.

IR detectors have a demodulator inside that looks for modulated IR at 38 KHz. Just
shining an IR LED won't be detected, it has to be PWM blinking at 38KHz.
Photocells do not have any sort of demodulator and can detect any frequency
(including DC) within the response speed of the photocell (which is about 1KHz)

101/106

IR detectors are digital out - either they detect 38KHz IR signal and output low (0V)
or they do not detect any and output high (5V). Photocells act like resistors, the
resistance changes depending on how much light they are exposed to.
Wiring diagram

102/106

Test instructions
C_Code_17_IR_Control_Matrix
First, observe the project result, then analyze the code.
11. Use cd command to enter 17_IR_Control directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/17_IR_Control
2. Use the following command to compile the code “LED_Matrix.c ” and generate
executable file “IR_Control.c ”
gcc IR_Control.c -o IR_Control -lwiringPi
3. Then run the generated file “LED_Matrix”.
sudo ./IR_Control
After completing the upload of the program, you will see the shape of the LED Matrix
display in the code.

Code explanation
#define IO digitalRead(PIN)
/*Define the pin that reads the infrared signal*/

if (count > 25)data[idx] |= (1<<cnt);
// Calculate the value of the button by counting the time of the pulse

103/106

Lesson 18 4_digit_LED_Segment
About this lesson:
In this lesson, you will learn how to use a 4-digit 7-segment display.

Introduction
According to the connection mode of the LED unit, it can be divided into a

common anode digital tube and a common cathode digital tube. The common anode
digital tube refers to the digital tube that connects all the anodes of the light-emitting
diodes together to form a common anode (COM). The common anode digital tube
should be connected to the common pole COM to +5V when applied, when the
cathode of a field LED When it is low, the corresponding field is lit. When the cathode
of a field is high, the corresponding field is not lit. The common cathode digital tube
refers to a digital tube that connects all the cathodes of the light-emitting diodes
together to form a common cathode (COM). When the common cathode digital tube is
applied, the common pole COM should be connected to the ground line GND, when a
field LED is used. When the anode is high, the corresponding field is lit. When the
anode of a field is low, the corresponding field is not lit.

Bit selection: 1, 2, 3, and 4 are selected in the pin diagram of the above digital
tube. Segment selection is to choose which digital tube to drive, such as the first and
second digits.

Segment selection: In the above digital tube pin diagram, a, b, c...f are segment
selection. The segment selection is to choose which segment of the digital tube to
drive, such as a, b, c segment digital tube.

104/106

Wiring diagram

105/106

Test instructions

C_Code_18_4_digit_LED_Segment
First, observe the project result, then analyze the code.
12. Use cd command to enter 18_4_digit_LED_Segment directory of C code.
cd ~/LAFVIN_PI_Code/C_Code/18_4_digit_LED_Segment
2. Use the following command to compile the code “4_digit_LED_Segment.c ” and
generate executable file “4_digit_LED_Segment.c ”
gcc 4_digit_LED_Segment.c -o 4_digit_LED_Segment -lwiringPi
3. Then run the generated file “LED_Matrix”.
sudo ./4_digit_LED_Segment
Connect the circuit correctly, after downloading the program, you will see that the
number displayed by the four digital tubes is increasing, similar to a chronograph

Code explanation
Display(unsigned char x, unsigned char Number)
// take x as coordinate and display number

void WeiXuan(unsigned char n)
/*Bit selection: 1, 2, 3, and 4 are selected in the pin diagram of the above digital tube.
Segment selection is to choose which digital tube to drive, such as the first and second
digits.*/

void Num_0(){}
void Num_9(){}
//Define a subfunction that displays each digit

Python_Code_18_4_digit_LED_Segment
First, observe the project result, then analyze the code.
1. Use cd command to enter 18_4_digit_LED_Segment directory of Python code.
cd ~/LAFVIN_PI_Code/Python_Code/18_4_digit_LED_Segment
2. Use Python command to execute IR_Control.py.
python 4_digit_LED_Segment.py
After completing the circuit connection, download the program, the number displayed
by the four digits is increased from 1 to 9, from 1111 to 9999.

Code explanation
def digitalWriteByte(val):

GPIO.output(38, val & (0x01 << 0))
GPIO.output(18, val & (0x01 << 1))

106/106

GPIO.output(31, val & (0x01 << 2))
GPIO.output(35, val & (0x01 << 3))
GPIO.output(37, val & (0x01 << 4))
GPIO.output(36, val & (0x01 << 5))
GPIO.output(29, val & (0x01 << 6))
GPIO.output(33, val & (0x01 << 7))

" " "Define a function that displays a single digit, and display the value of the
parameter val. In fact, it is based on the binary of val to determine which segment of
the digital tube is on or off." " "

def display_3(num):
b0 = num % 10
b1 = num % 100 / 10
b2 = num % 1000 / 100
b3 = num / 1000

" " "The four digits to be displayed are decomposed in decimal, and the digits
displayed by ones, tens, hundreds, and thousands are displayed separately." " "

	Content
	Packing list
	Introduction to Raspberry Pi
	Install the System
	GPIO Libraries
	Code operation
	Lesson 1 Blink
	Lesson 2 Button control LED
	Lesson 3 Flowing LED Lights
	Lesson 4 RGB LED
	Lesson 5 Buzzer
	Lesson 6 DC Motor
	Lesson 7 Servo
	Lesson 8 LCD1602
	Lesson 9 PIR motion sensor
	Lesson 10 Stepper Motor
	Lesson 11 Segment Display
	Lesson 12 DHT11
	Lesson 13 Ultrasonic
	Lesson 14 Membrane Switch Module
	Lesson 15 GY-521 SENSOR
	Lesson 16 LED Matrix
	Lesson 17 IR Control
	Lesson 18 4_digit_LED_Segment

